Windows 10 start button not working

On a number of occasions the Windows start button stopped working on computers running Windows 10 on this side. You might find a number of possible fixes online for this issue, but this one works here:

1. Open the Task manager (Press Ctrl+Alt+Del).
2. Click File > Run New Task
3. Make sure you have a check mark beside “Create this task with administrative privileges” Click “OK”
4. Type CMD. Press [Enter].
5. Type the following three commands at the CMD prompt, press [Enter] and wait for each to finish before you move to the next one (Tip: copy the last one):
dism /online /cleanup-image /restorehealth
powershell
Get-AppXPackage -AllUsers |Where-Object {$_.InstallLocation -like “*SystemApps*”} | Foreach {Add-AppxPackage -DisableDevelopmentMode -Register “$($_.InstallLocation)\AppXManifest.xml”}
6. Close the CMD window
7. Restart Windows.

Support for RFID forensic evidence management

Radio frequency identification (RFID) tags – devices that can transmit data over short distances to identify objects, animals or people – have become increasingly popular for tracking everything from automobiles being manufactured on an assembly line to zoo animals in transit to their new homes. Now, thanks to a new NIST report, the next beneficiaries of RFID technology may soon be law enforcement agencies responsible for the management of forensic evidence.

A typical RFID system consists of a microchip programmed with identifying data – the “tag” – and a two-way radio transmitter-receiver, called an interrogator or a reader depending on its use. The tag can be attached or embedded in the item to be tracked, with the radio either sending a signal to the tag or reading its response.

Common examples of RFID systems include the FasTrak and E-ZPass in-car tags for automatically collecting tolls, tagged prescription drugs that help pharmacies meet US federal and state safety regulations, and credit cards with embedded RFID chips that provide a more secure way of transmitting card numbers than magnetic strips. RFID systems can read hundreds of tags in a few seconds and track an item as it moves through a process. More advanced RFID tags can sense and report on environmental conditions, or encrypt the data they send.

While some law enforcement agencies have used barcodes to improve their forensic evidence tracking, storage and retrieval processes, very few have implemented RFID because of concerns about startup costs, the reliability of the technology and the current lack of relevant RFID standards for property and evidence handling. To help agencies better understand these issues and properly assess the pros and cons of RFID evidence management, NIST recently published RFID Technology in Forensic Evidence Management, An Assessment of Barriers, Benefits, and Costs. The report is the result of a NIST-funded study on automated identification technology (AIT). The Technical Working Group on Biological Evidence Preservation, cosponsored by NIST and the National Institute of Justice (NIJ), commissioned the study and report.

The NIST report includes a helpful overview of AITs – focusing primarily on RFID and barcode technologies – and how they work. It describes, in depth, the types of RFID systems available (passive, active and battery-assisted), their price ranges, and the components necessary for a complete system. The report also details the barriers that agencies may encounter, followed by a series of successful RFID management case studies, including examples from the pharmaceutical and retail industries, and one law enforcement agency that has made the switch, the Netherlands Forensics Institute.

The practical question that agencies must consider–and one that the NIST report can help them answer – is whether RFID technology can produce measurable benefits and a positive return on the funds invested in a new system. The NIST report estimates that RFID systems can pay back their initial set-up cost in about two years.

Various factors can affect the payback period. For example, systems that track and manage larger inventories of evidence (100,000 or more items) will recoup costs more quickly than those handling smaller inventories. However, if multiple jurisdictions share the costs of a system, the payback period can be shorter.

New web privacy system

Researchers from UCL, Stanford Engineering, Google, Chalmers and Mozilla Research have built a new system that protects Internet users’ privacy whilst increasing the flexibility for web developers to build web applications that combine data from different web sites, dramatically improving the safety of surfing the web.

The system, ‘Confinement with Origin Web Labels,’ or COWL, works with Mozilla’s Firefox and the open-source version of Google’s Chrome web browsers and prevents malicious code in a web site from leaking sensitive information to unauthorised parties, whilst allowing code in a web site to display content drawn from multiple web sites – an essential function for modern, feature-rich web applications.

Testing of COWL prototypes for the Chrome and Firefox web browsers shows the system provides strong security without perceptibly slowing the loading speed of web pages. COWL is freely available for download and use from http://cowl.ws. The team who developed it, including two PhD students from Stanford (working in collaboration with Mozilla Research) and a recently graduated PhD from UCL (now employed by Google), hope COWL will be widely adopted by web developers.

Currently, web users’ privacy can be compromised by malicious JavaScript code hidden in seemingly legitimate web sites. The web site’s operator may have incorporated code obtained elsewhere into his or her web site without realising that the code contains bugs or is malicious. Such code can access sensitive data within the same or other browser tabs, allowing unauthorised parties to obtain or modify data without the user’s knowledge.

When building a modern web site, web developers routinely incorporate JavaScript library code written by third-party authors of unknowable intent. The study cites measurements indicating that 59% of the top one million web sites and 77% of the top 10,000 web sites incorporate a JavaScript library written by a third party. The team say such inclusion of JavaScript libraries is dangerous, as although the code includes features the web developers want, it might also contain malicious code that steals the browser user’s data. In such cases, the SOP cannot protect sensitive data, as the included library is hosted by the same web site origin (i.e., under the same Internet domain name).